
Joel Jakubovic 
PhD year 2 

University of Kent 
jdj9@kent.ac.uk

Programming “systems” 
deserve a theory too!
A <Programming> 2021 Conversation Starter

Jonathan Edwards 
jonathanmedwards@gmail.com

Tomas Petricek 
Supervisor 

University of Kent 
T.Petricek@kent.ac.uk

mailto:jonathanmedwards@gmail.com


NOTICE: To facilitate high-quality 
discussion in the session, we ask 
everyone to submit 1 position slide 
to introduce their contributions.
• Max 2 minutes per person


• Send a PDF by 1 hour before the session (held at Wed 
24 March, 5pm UK time) to jdj9@kent.ac.uk


• On the day, we’ll quickly review the slides here, 
and then proceed to participant submissions. 
We’ll then follow with open-ended discussion.

mailto:jdj9@kent.ac.uk


Lots of theory about 
programming languages… …but how do you theorise this??



What’s currently lacking
• Programming systems often go beyond programming languages. 


• Programming is often done in the context of a stateful environment, through a graphical 
user interface, by interacting with the system rather than just by writing code. 


• Much ongoing research effort focuses on building programming systems that are easier 
to use, accessible to non-experts, innovative, moldable and/or powerful. 


• Such efforts are often disconnected. They are informal, guided by the personal vision 
of the authors and thus are only evaluable and comparable on the basis of individual 
experience using them. 

• In other words, they fail to form a coherent body of research. It isn't clear how to build 
on what has been done before. 

• Might we turn the “black art” of programming system design into a more easily 
collaborative, progressive — even scientific — endeavour?



Introducing “Technical Dimensions” of Programming Systems
We’re proposing a set of named “technical dimensions” to compare and analyse 
programming systems. Among our influences are:


• The Cognitive Dimensions of Notation framework: a named set of interrelated 
axes for characterising notations; we wish to extend the same approach beyond 
the surface “notation”


• The various Design Patterns: a common vocabulary for software engineers, set 
out in a standard template including summary, details, examples and relations


• Chang’s Complementary Science: that it is a valuable activity to revisit the 
forgotten or superseded science of the past and engage with it in order to better 
appreciate the present paradigm


• PPIG 2019’s “Evaluating Programming System Design”: a survey of the 
difficulties with system-focused research venues and a look toward incorporating 
multimedia and interactive essays into the evaluation of submissions


We follow some broad heuristics about what we want them to do:


• Go deeper than mere “notation”


• Not be obviously “good” or “bad”, tradeoffs welcome


• Span a variety of existing and possible systems, including OS-like (Unix, Lisp, 
Smalltalk) and traditional PLs


• Ideally place PLs in a small region of the space of possibilities to reflect how 
similar they really are as interactive programming systems

Programming Languages 
“Hornets’ Nest”

Java

Haskell

UNIX
Smalltalk

HyperCard

Boxer

Spreadsheets

PERIDOT

Pygmalion

???

???

???

???

SQL
C++
Rust

Dim #1

Dim #2

http://tomasp.net/academic/papers/evaluating-systems/


Dimension: Feedback Loops

Immediate Feedback

• …is where the evaluation gulf is imperceptibly small

• …and results are demanded automatically without manual polling

• Direct Manipulation (DM) is a sub-type, uses proxy of finger or hand


Liveness

• Immediate Feedback is necessary, but not sufficient 

• “The thing on the screen is the actual thing” suggests that some 

measure of DM and bi-directionality may be needed


Examples

• Statically-checked programming languages (see diagram)

• Spreadsheets have the usual DM loop for values and formatting, and 

a loop for formula editing and use. In this latter loop, execution 
involves designing and typing formulas; evaluation is often shortened 
by editor features such as immediate cell previews.

How do users execute their ideas, evaluate the result, and generate new ideas in response?

Cycle 3: Runtime observation 
Repeats until program “works 

well enough”

Cycle 2: Static checks 
Repeats until new code is 

statically valid

Cycle 1: Supplementary medium 
Repeats until code ready to submit

…

…

execute

evaluate

…

Feedback loop = 
Gulf of Execution + 
Gulf of Evaluation

Supplementary medium = 
e.g. paper notebook for 
working out the code design



Dimension: Notational Structure

Complementing notations

• … represent different parts of the domain e.g. Boxer, HyperCard, spreadsheets

• Excel formulas describe dataflow and arithmetic through the cells, while VBA 

macros can do more general programming

• How are they connected and how does the user transition between them?

• One can write Excel macros to evaluate formulas, so there is a subset relation here

• Optimised for easy learnability at the beginning (formulas), with a sudden jump to 

learning a conventional programming language (VBA macros)

What are the different textual & visual notations through which the system is programmed? 
How do they overlap or complement each other?

Overlapping notations

• … fully or partially 

represent the same thing, 
e.g. in Sketch ’n Sketch


• Requires synchronization 
between the different 
representations e.g. editing 
with DM causes program 
code synthesis

Boxer: code within 
nested box substrate

Sketch ’n Sketch: 
bidirectional programming



Dimension: Factoring of Complexity
Composability

• “You can get anywhere via a number of smaller steps” 
• There are primitive components with a range of useful combinations, 

called their span by analogy with vectors

• Key to the notion of “programmability” so every programming system 

will have some minimal amount of this

Convenience

• “You can get to X, Y and Z via one single step”

• Can take the form of canonical solutions and utilities e.g. the expansive 

Python standard library.

• Specific solution to a specific problem, not necessarily generalisable or 

composable

Commonality

• Humans can see Arrays, Strings, Dicts and Sets all have a “size”, but the 

computer needs to be told that they are the “same”

• Commonality can be factored out into an explicit structure (“Collection” 

class); analogous to database normalization 
• …or it can be left implicit; less work, but permits instances to diverge 

(maybe Arrays and Strings have “length”, but Dict and Set call it “size”) - 
analogous to redundancy in databases.

What are the primitives? How can they be combined? How is common structure recognised and utilised?

Flattening & Factoring

• Take a structure we recognise as multidimensional, e.g. 

“vehicle type” and “colour” are independently variable 
• System might only permit this as an exhaustive 

enumeration: classes RedCar, BlueCar, RedVan, 
BlueVan, RedTrain, BlueTrain, …


• The computer sees a flat list of atoms. The user cannot 
just “change the colour to Red” programmatically.


• Just as 16 factors to 2*2*2*2, there is implicit structure 
here that remains un-factored.

Smalltalk 
Collections 
hierarchy



Other dimensions (no particular order)
Concept of “error”: What does the system 
consider to be an error, and how does it 
approach their prevention and handling?


Background knowledge: What background 
knowledge does the system demand in order to 
be judged on its own merit?


Abstraction mechanisms: What is the 
relationship between concrete and abstract in 
the system? How are abstract entities created 
from concrete things and vice versa?


Status-quo compatibility: What tradeoffs are 
made between logical coherence and 
compatibility with established technologies? 
Does the system replace established 
technologies or attempt to adapt and recombine 
them?


Information loss: Where is information being 
destroyed or scrambled in a hard-to-recover 
manner? (relevant to provenance and bi-
directionality)


Self-mutability: to what extent can the system 
be changed from within? What features have 
been “baked in”, “set in stone”, “hard-coded”?


Target audience: what role does the system 
encourage for its users? Does it appeal to 
particular personality types?


Locus of uniformity: What are the central 
notions or basic assumptions defining the 
worldview imposed by the system, and what is 
the degree of similarity between different 
notions?



Four key questions
1. Can we identify a set of technical dimensions which let us meaningfully 

compare different programming systems?


2. How do we distinguish a meaningful, useful technical dimension from just 
any old ad-hoc observable property of a system? How do we evaluate how a 
proposal fits in the framework?


3. Should we expect to be able to bridge such large conceptual gaps as that 
between, say, statically-typed languages like Haskell and “end-user” 
environments like HyperCard?


4. Can the dimensions map out a space where existing systems may be 
plotted, revealing overlooked combinations that have not yet been tried?

let’s discuss…



NOTICE: To facilitate high-quality 
discussion in the session, we ask 
everyone to submit 1 position slide 
to introduce their contributions.
• Max 2 minutes per person


• Send a PDF by 1 hour before the session (held at Wed 
24 March, 5pm UK time) to jdj9@kent.ac.uk


• On the day, we’ll quickly review the slides here, 
and then proceed to participant submissions. 
We’ll then follow with open-ended discussion.

mailto:jdj9@kent.ac.uk

