Programming “systems”
deserve a theory too!

A <Programming> 2021 Conversation Starter

Joel Jakubovic Jonathan Edwards Tomas Petricek
PhD year 2 jonathanmedwards@gmail.com Supervisor
University of Kent University of Kent

jdj9@kent.ac.uk T.Petricek@kent.ac.uk

mailto:jonathanmedwards@gmail.com

NOTICE: To facilitate high-quality
discussion In the session, we ask
everyone 10

to Introduce their contributions.

e Max 2 minutes per person

 Send a PDF by 1 hour before the session (held at Wed
24 March, 5pm UK time) to |[d|9@kent.ac.uk

* On the day, we’ll quickly review the slides here,
and then proceed to participant submissions.
We’ll then follow with open-ended discussion.

mailto:jdj9@kent.ac.uk

Lots of theory about
programming languages... ...but how do you theorise this??

: ‘§System Browserfi i
Based on A - (9-1) i J\COHQCtlo_ns-S‘equvé.fm'-:_:__:._ _______ e e s e S e SRR S S EEs
Synl‘ax { Collections-Text |Interval e e
. ' Collections-Arrave] LinkedList g callect: i
T == Evaluation Collections-Stream{ M ; e i dege do: B e il
P appedCollectio '
. . -~ e tion | addin . i
y terms:. t t ‘:0||9;FIOHS‘SUPPOI';Cl!’dQI'EdCO"ection rerrov?ng do:andBetweenDo: e ‘3
- Graphics-Primitives e 7 et b aromoteFirsts Th
AX:T. t variable tL — t’l Gr'a:-jhic s-O'ilsn;:::-e ?_Oit_e_c&?‘_'%c_t_ion 's:\iufgfrfaﬁn_g iy te'v;n:sree rstSuchTH
-T. _ , eaeey VB Graphics-Media private reverseDo; i
abstraction t to — t,l to (1) § Graphics-Paths et | select:|Form Editor]. | | T T
t t appllcatlon T fostence etass | | e
AX t) t2 N -t’2 -4 collect: aBlock .
- [T] type CleU’aC(lon . : (E-APPZ) “Fvaluate aBlock with each of my elements A .ﬁ. (‘
. . l 2 - V t' ."“.?u.f.*:' e deN into - » ? - J 43 E‘Llj‘?ent Q9 = Grg-‘)mQRt. q ‘:'-_ 4 4
type appllcatl()n L L2 (‘:“L"‘\k?’?“z“;:?i:ﬂ :.::.:i!.mdw’-? that is like me. Answer with i Q/._Z.
(AX :T]] . t]2) V2 —_— [X — V2]t]2 (E'APPABS) rride superciass in order to use add:, not at:put:. 5
.) . S ewCollection €« s : .
x:T.t abstraction value 0T BT Saif o ['ce;oc: | n:: CoRsstiin add
: - SR st tion add: (aBlock value: e
AX.t type abstraction value T [TZ] — tll [T.Z] (APP) o tnewCollection REVER SN etk I
& File Edit Font S it '
) tyle InitialRevi
T == (AX.t12) [T2] — [X—T view Decompose Com " : /
- . = t - T pose _HRDNG _Sinsiiavie -
. type variable | Typing S Button|Positive Gravity 7
l)/pe Of functions ' " Table of Contents
VX.T universal type xirel (&) Croup Toetve Acceleration ;
[=x: T-VAR) in proj
r - ExiT 5 Composed in project launch 8/14/92 9:38 AM
= Appea ;
o contexts: I,x:Ti -t :To S b @® Behavior O How it works
Mo i
x:T e.mmy context = AX:Ty .t Ti—To (T-ABS) Iriggers gMo::zﬁgwn Co}:ousw-"m-ow" e ["“’” 218
r, : term variable binding et T Accelerated Motion 1 Dusalithin O Masselsove | =
, X type variable binding 12 Tn—=Tz2 Trt2:Tnh Actions for [Stop increasing 1 ity a4
¢ (T-APP) this Trigger |Displaya Value1
Ity tr: T Display a Value 1
xV
. Variables for |B™eDisplaya Value:number to display}:l pntal 13
r: X = t T2 this Trigger lﬂmﬁ-ﬂl-gi.splaya Valm:{numb(;r tlzl:liasﬁtay}ﬂ ﬁ ity
I-AX.t2 1 VX. T2 (T-TABS) elecity.Displays Valumember to displey}l
Behavior [Ofpntal 166
on
. put the top of card button "Positi ity i 13 Peirine
't @ VX. T2 (T-TA pur the left of miﬂi G g::ﬁ I 1 g e ety > 2
Tt . = - PP choose eraser tool — Clear the Graphies,1 gard Cield Movsover, —Save the Joft of buttoa 1,1
. 1 [T2] £ X TelTo:) kA At
icture” — i
Figure 23-1: Pol : vhoose browse tool = Clear tlfte”éhr:piircaﬂm’s
: ymorphic lambda-calculus (System F) ! i:ﬁ Mﬁ;w; s‘;:celzm;: Motion 1,1 rlg vert (-40
o c - : o
remt ;»:;hlelxz:;; to 913 IIA.c;e]nged Ml'tm 1,::e1ermd Motion 1,2 4
L0V — Aecelerated Motion 1,4
=Dj 11
Created /31 2by Mok Guialin pietGraty Simla i

What’s currently lacking

Programming systems often go beyond programming languages.

Programming is often done in the context of a stateful environment, through a graphical
user interface, by interacting with the system rather than just by writing code.

Much ongoing research effort focuses on building programming systems that are easier
to use, accessible to non-experts, innovative, moldable and/or powerful.

Such efforts are often disconnected. They are informal, guided by the personal vision
of the authors and thus are only evaluable and comparable on the basis of individual
experience using them.

In other words, they fail to form a coherent body of research. It isn't clear how to build
on what has been done before.

Might we turn the “black art” of programming system design into a more easily
collaborative, progressive — even scientific — endeavour?

Introducing “Technical Dimensions” of Programming Systems

We’re proposing a set of named “technical dimensions” to compare and analyse

programming systems. Among our influences are:

 The Cognitive Dimensions of Notation framework: a named set of interrelated
axes for characterising notations; we wish to extend the same approach beyond

the surface “notation”

* The various Design Patterns: a common vocabulary for software engineers, set
out in a standard template including summary, details, examples and relations

 Chang’s Complementary Science: that it is a valuable activity to revisit the
forgotten or superseded science of the past and engage with it in order to better

appreciate the present paradigm

* PPIG 2019’s “Evaluating Programming System Design”: a survey of the
difficulties with system-focused research venues and a look toward incorporating
multimedia and interactive essays into the evaluation of submissions

We follow some broad heuristics about what we want them to do:

 (Go deeper than mere “notation”

* Not be obviously “good” or “bad”, tradeoffs welcome

e Span a variety of existing and possible systems, including OS-like (Unix, Lisp,

Smalltalk) and traditional PLs

 |deally place PLs in a small region of the space of possibilities to reflect how

similar they really are as interactive programming systems

Dim #1 27?7
®
2?7
o
2?7
®
.PERIDOT
.Boxer -
Pygmalion
o " Smalltalk
“ UNIX
299 'HyperCar_, -
@®_Java
‘:.!.C++
000
Spreadsheets SQL ™ “g'\ Rust
o Haskell

Programming Languages
“Hornets’ Nest”

http://tomasp.net/academic/papers/evaluating-systems/

Dimension: Feedback Loops

How do users execute their ideas, evaluate the result, and generate new ideas in response?

execute '

Immediate Feedback _

| | o | Feedback Ioo_p = p—
e ...Is where the evaluation gulf is imperceptibly small Gulf of Execution +
e ...and results are demanded automatically without manual polling Gulf of Evaluation

 Direct Manipulation (DM) is a sub-type, uses proxy of finger or hand '

Supplementary medium =
Liveness e.g. paper notebook for -
working out the code design

 Immediate Feedback is necessary, but not sufficient

 “The thing on the screen is the actual thing” suggests that some p—:
measure of DM and bi-directionality may be needed Cycle 1: Supplementary medium .
Repeats until code ready to submit
Examples —
e Statically-checked programming languages (see diagram) Cycle 2: Static checks
_ Repeats until new code is p
 Spreadsheets have the usual DM loop for values and formatting, and statically valid
a loop for formula editing and use. In this latter loop, execution
involves designing and typing formulas; evaluation is often shortened e

Cycle 3: Runtime observation
Repeats until program “works

well enough” _
evaluate

by editor features such as immediate cell previews.

Dimension: Notational Structure

What are the different textual & visual notations through which the system is programmed?
How do they overlap or complement each other?

Complementing notations

. represent different parts of the domain e.g. Boxer, HyperCard, spreadsheets

Excel formulas describe dataflow and arithmetic through the cells, while VBA
macros can do more general programming

How are they connected and how does the user transition between them?
One can write Excel macros to evaluate formulas, so there is a subset relation here

Optimised for easy learnability at the beginning (formulas), with a sudden jump to
learning a conventional programming language (VBA macros)

Overlapping notations

) fu I |y O r part i aI |y DN Sketch-n-Sketch File Examples CodeTools OutputTools View Options
. Current file: Untitled ((iiij) Mondrian Arch) * o Context: Program Built;in Tools
represent the same thing, > Skoth 'n Skotah: e
1 . (0] .
. p) 2 [left, top] as topLeft = [95, 171] etC n etC . o~ Pointor Offset
e.g. in Sketch ’n Sketch 1 e e o
‘ reignt - 335 bidirectional programming e
. h "] 6 stoneWidth = 73 r archFunc
Requires synchronization A
u 9 . . . vec2DPlus
between the different Tl e CCier e o SopLefe) vk hetaht vl e
12 let pillarHe ght —he ght - stoneWidth in °
] 0oL ' - idth i .
representations e.g. editi ng 7 E’LRSEE’ZF e 2 o Fleft, pillarTop] stoneidth 0 e
15 let rightPilla ect 134 [left + width- stoneWidtl O fing
. 16 [lintel, leftPi 11 , rightPillar]
Wlth DM Causes program 1275 arch = archFunc topLeft width height stoneWidth o ellipse
. 19 . rect
code synthesis . : # o

22])

Boxer: code within
nested box substrate

You can make arcs with the procedures ARCRIGHT and RRCLEFT.

epeat degrees

1input si1ze degrees

forward size

left 1

Here are some arocedures that draw pictures using arcs:

Siower = limnE:

arcright ¥

m hdedddl i npUt

VWT v epeat 2
. Erc]eft r 90
S , rcright r 9@

RS Fepeat S

ray
right 160

JCraph1c§Tf"“ -

Try runnzng some of’the Followang commands to drau pictures

in the graphics box a ove.

gun R: 9. ?4 tﬂower S: 1.4

51 nky R:;2.6

Dimension: Factoring of Complexity

What are the primitives? How can they be combined? How is common structure recognised and utilised?

Ob/ect

COmpOsabl | |ty Collectlon

 “You can get anywhere via a number of smaller steps” / \
* There are primitive components with a range of useful combinations,

_ _ SequenceableCollection Set Bag

called their span by analogy with vectors A V\Lmkedmt Smalltalk
« Key to the notion of “programmability” so every programming system interval P'“ggab'eSet Collections

WI” have some minimal amOunt Of thIS ArrayedCollection OrderedCollection Dictionary hlerarChy
C O n Ve n I e n C e Arrag//Zti n:\Text Sorted(jollection Identity[ibc:\tionary
« “You can get to X, Y and Z via one single step” AN

. _ o _ ByteString Symbol PluggableDictionary

 (Can take the form of canonical solutions and utilities e.g. the expansive

Python standard library. Flattening & Factoring
* Specific solution to a specific problem, not necessarily generalisable or _ o _

composable Take a structure we recognise as multidimensional, e.qg.
Commonality vehicle type” and “colour” are independently variable
e Humans can see Arrays, Strings, Dicts and Sets all have a “size”, but the * System mlght only permit this as an exhaustive

computer needs to be told that they are the “same” enumeration: classes RedCar, BlueCar, RedVan,
« Commonality can be factored out into an explicit structure (“Collection” BlueVan, RedTrain, Bluelrain, ...

class); analogous to database normalization « The computer sees a flat list of atoms. The user cannot
e ...orit can be left implicit; less work, but permits instances to diverge just “Change the colour to Red” programmatica”y_

(maybe Arrays and Strings have “length”, but Dict and Set call it “size”) - . . .

analogous to redundancy in databases. * Just as 16 factors to 227272, there is implicit structure

here that remains un-factored.

Other dimensions (no particular order)

Concept of “error”: What does the system
consider to be an error, and how does it
approach their prevention and handling?

Background knowledge: What background
knowledge does the system demand in order to
be judged on its own merit?

Abstraction mechanisms: What is the
relationship between concrete and abstract in
the system? How are abstract entities created
from concrete things and vice versa?

Status-quo compatibility: \What tradeoffs are
made between logical coherence and
compatibility with established technologies?
Does the system replace established
technologies or attempt to adapt and recombine
them?

Information loss: Where is information being
destroyed or scrambled in a hard-to-recover
manner? (relevant to provenance and bi-
directionality)

Self-mutability: to what extent can the system
be changed from within? What features have

been “baked in”, “set in stone”, “hard-coded”?

Target audience: what role does the system
encourage for its users? Does it appeal to
particular personality types”?

Locus of uniformity: What are the central
notions or basic assumptions defining the
worldview imposed by the system, and what is
the degree of similarity between different
notions?

Four key questions
1.

Can we identify a set of technical dimensions which let us meaningfully
compare different programming systems?

How do we distinguish a meaningful, useful technical dimension from just
any old ad-hoc observable property of a system? How do we evaluate how a
proposal fits in the framework?

. Should we expect to be able to bridge such large conceptual gaps as that

between, say, statically-typed languages like Haskell and “end-user”
environments like HyperCard??

Can the dimensions map out a space where existing systems may be
plotted, revealing overlooked combinations that have not yet been tried?

let’s discuss...

NOTICE: To facilitate high-quality
discussion In the session, we ask
everyone 10

to Introduce their contributions.

e Max 2 minutes per person

 Send a PDF by 1 hour before the session (held at Wed
24 March, 5pm UK time) to |[d|9@kent.ac.uk

* On the day, we’ll quickly review the slides here,
and then proceed to participant submissions.
We’ll then follow with open-ended discussion.

mailto:jdj9@kent.ac.uk

