Functional Programing in Pattern-Match-Oriented Programming Style

Satoshi Egi (Rakuten Institute of Technology, Rakuten Inc. / The University of Tokyo)

Yuichi Nishiwaki (The University of Tokyo)

What is Egison and PMOP?

Egison is a programming language that we have developed
to advocate pattern-match-oriented programming (PMOP).
Egison features user-extensible non-linear pattern matching
with backtracking.

PMOP confines recursions that describe backtracking into
non-deterministic patterns.

def delete xxs = ETNCRTENS

32 :Eg y [(] : []s) X==y=ys match xs as list eq with
Y-y _ Y= | Shs ++ #x:: Sts-> hs ++ ts
delete x (y:ys) =y : delete xys

| ->Xs

Example. Poker hand

We can describe patterns for a multiset. Users can define @
pattern-match method for multisets.

def poker cs :=

match cs as multiset card with

| [card $s Sn, card #s #(n-1), card #s #(n-2), card #s #(n-3), card #s #(n-4)]
->"Straight flush"

| [card _ $n, card _#n, card _ #n, card _#n,]
-> "Four of a kind"

| [card _Sm, card _#m, card _#m, card _$n, card _ #n]
-> "Full house"

| [card $s _,card #s ,card #s , card #s , card #s]
->"Flush"

| [card _ $n, card _ #(n-1), card _#(n-2), card _ #(n-3), card _ #(n-4)]
->"Straight”

| [card _Sn, card _#n, card _#n, _,]
->"Three of a kind"

| [card _$m, card _#m, card _$n, card _#n,]
->"Two pair”

| [card _$n,card _#n, , ,]
->"0One pair”

| [s _s _s 1 ->"Nothing"

poker [Card Spade 5, Card Spade 6, Card Spade 7, Card Spade 8, Card Spade 9]
-- "Straight flush"

poker [Card Spade 5, Card Diamond 5, Card Spade 7, Card Club 5, Card Heart 7]
-- "Full house"

poker [Card Spade 5, Card Diamond 10, Card Spade 7, Card Club 5, Card Club 8]
--"One pair”

Example. TWin primes

The combination of non-linear patterns and backtracking is

powerful.

Twin primes

take 5 (matchAll primes as list integer with
|_++Spu#(p+2):_->(p,p+2)
o [(39 5)9 (59 7)9 (119 13)9 (179 19)9 (299 31)]

Sequential prime pairs that

take 5 (matchAll primes as list integer with

|_++Spu(#(p+2)&Sq):_->(p,)
- [(2, 3), (7, 1), (13,17), (19, 23), (23, 29)]

are not twin primes

lpat: not-pattern
pat1 & pat2: and-pattern

take 5 (matchAll primes as list integer with Prime pairs whose form s

|_++Spu_++#(p+6):_->(p,p+6)
- [(5, 1), (7,13), (1, 17), (13, 19), (17, 23)]

(p, p+6)

Prime triplets

take 5 (matchAll primes as list integer with
|_++SpuSqu#(p+6):_->(p,q,p+6)
- [(5, 7, 1), (7,11,13), (11,13, 17), (13, 17,19), (17, 19, 23)]

Example. Davis-Putnum algorithm

PMOP allows programmers to focus on writing the essential
parts of an algorithm by distinguishing two types of
computations:

1.Computations that can be implemented in backtracking
algorithms (backtrack-able computations);

2.Computations that are essential for improving the time
complexity of an algorithm for solving a problem (essential

computations).
Traditional FP
let rec dp clauses =
if clauses =[] then true else if mem [] clauses then false else

try dp (one_literal_rule clauses) with Failure _->
try dp (pure_literal_rule clauses) with Failure _->

dp(resolution_rule clauses);;

Backtrack-able computation
Backtrack-able computation
Essential computation
Backtrack-able computation

let one_literal_rule clauses =
let u = hd (find (fun cl -> length cl = 1) clauses) in
assignTrue u clauses;;

Essential computation
Backtrack-able computation
Backtrack-able computation

Essential computation
Backtrack-able computation

let pure_literal_rule clauses =
let us = unions clauses in
let u = hd (find (\u -> mem (negate u) us) us) in
assignTrue u clauses;;

Traditional FP mixes two computations.

OCaml program taken and modified from [Harrison, 2009]

PMOP (Egison)

Backtrack-able computations

def dp cnf :=
matchDFS cnf as multiset (multiset integer) with
| [1-> True
| 0:_->False
-- one-literal rule
| (Sx 2 [1) :: _-> dp (assignTrue x cnf)
-- pure literal rule PMOP distinguishes two computations.
| (Sx 22) 2 l(#(negate x) ::) ::) -> dp (assignTrue x cnf)
-- otherwise
| _->dp (resolution cnf)

PMOP quizzes

We can redefine various list functions in PMOP style.

Essential computations

def member x xs := match xs as list eq with
| (1) |->True

| _->False

member 2 [1, 2, 3] -- True
member 4 [1, 2, 3] -- False

def deleteAll x xs := matchAll xs as list eq with
| (2) ->y
deleteAll 21, 2, 3, 2] -- [1, 3]

def unique xs := matchAIIDFS xs as list eq with
| ++ $x::‘ (3) ‘->X

unique[1, 2, 3, 2] - [1, 3, 2]

def intersect xs ys := matchAll (xs, ys) as (set eq, set eq) with
[($x::_,| (4) P->x

intersect [1, 2, 3] [2, 3, 4] -- [2, 3]

def difference xs ys := matchAll (xs, ys) as (set eq, set eq) with
[(Sxz_,| (5) |)->x

difference [1, 2, 3] [2, 3, 4] -- [1]

Answers: (1) _++#x: , (2) _++ (IX&Sy) s, () W_++#x::), @) #xz_, (5) W#x::)

