Incremental Compilation for Stratego
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Whole program compilation takes in all relevant files with Stratego modules. It parses all and builds a single internal model Cost of changing one strategy:
of the program. This is then used to generate a Java class for each strategy, and to generate two shared classes. Full compilation
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Dynamic linking compilation model
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N With a dynamic linking approach the compiler is run once for each module. This means that it
: : multiple modules define the same strategy, we now have duplicate classes. These classes need to
InterOpReQIStrer'Java be merged (linked) at run-time. This was a case study for the Pluto incremental build system [2].
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Our work: Static linking compilation model
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