
definitions: [s1,s2,s3]

module k
 

strategies
  s2 = ... 

  s3 = ... 

module m
imports k
 
strategies
  s1 = ... 

  s1 = ... 

  s2 = ... 

Main.java

InteropRegistrer.java

s1_0_0.java

s2_0_0.java

s3_0_0.java

success, 
messages

Front

Front CheckModule 

CheckModule 

Check 

messages

messages

Compile 

Back 

Back 

Back 

Back 

ast of s1

ast of s2

ast of s3

Resolve moduleList: [m, k]

imports: [k], 
definitions: [s1, s2]

ast of s2

messages

imports: [], 
definitions: [s2, s3]

modules defining s1: [m]
modules defining s2: [m,k]

modules defining s3: [k]

success, 
messages, 
files written

ast, 
imports: [k], 

definitions: [s1, s2], 
references: [s3]

ast, 
imports: [] 

definitions: [s2, s3], 
references

referenced defs: [s3]

Constructing Hybrid Incremental Compilers for Cross-Module Extensibility
with an Internal Build System 
Jeff Smits, Gabriël Konat, Eelco Visser 
doi:10.22152/programming-journal.org/2020/4/16 

Incremental Compilation for Stratego

Our work: Static linking compilation model

Dynamic linking compilation model

Whole-program compilation model
Stratego [1] is a DSL for
program transformation
based on term rewriting with
programmable rewriting
strategies. Named rules and
strategies can be defined in
multiple modules. Multiple
definitions with the same
name are merged as different
options of the rule or strategy.
This is an extensibility
mechanism of the language. 

With a dynamic linking approach the compiler is run once for each module. This means that if
multiple modules define the same strategy, we now have duplicate classes. These classes need to
be merged (linked) at run-time. This was a case study for the Pluto incremental build system [2].

Whole program compilation takes in all relevant files with Stratego modules. It parses all and builds a single internal model
of the program. This is then used to generate a Java class for each strategy, and to generate two shared classes. 

Cost of changing one strategy: 
Full compilation

Cost of changing one strategy: 
Compiler run for one file 

Runtime cost for every strategy call

Main.java

InteropRegistrer.java

s1_0_0.java

s2_0_0.java

s3_0_0.java

module k
 

strategies
  s2 = ... 

  s3 = ... 

module m
imports k
 
strategies
  s1 = ... 

  s1 = ... 

  s2 = ... 

requires
produces
contributes to 

compiler

s1, s1 (m)

s2 (m)

s2 (k)

s3 (k)

s2 (m), s2 (k)

s1_0_0

s2_0_0

s3_0_0

Frontend Backend

compiler

s2_0_0

s3_0_0

InteropRegistrer.java

s1_0_0.java

module k
 

strategies
  s2 = ... 

  s3 = ... 

module m
imports k
 
strategies
  s1 = ... 

  s1 = ... 

  s2 = ... 
s2_0_0.java

compiler

InteropRegistrer.java

s1_0_0.java

s2_0_0.java

runtime

s1_0_0

This benchmark shows the
incremental compile times of 119
commits in a Stratego codebase of
399 files with 10,091 distinct named
strategies. The compile time of the
whole-program compiler was
93.54±5 seconds. The clean
compiler time of the incremental
compiler is 178.53 seconds. The
gain of our incremental compiler is
under 10 seconds recompilation
instead of 1.5 minutes.

[1] "Stratego/XT 0.17. A language and toolset for
program transformation", Bravenboer et al. 
SCP'07 doi:10.1016/j.scico.2007.11.003 
[2] "A sound and optimal incremental build system
with dynamic dependencies", Erdweg et al. 
OOPSLA'15 doi:10.1145/2858965.2814316 
[3] "Scalable incremental building with dynamic
task dependencies", Konat et al. 
ASE'18 doi:10.1145/3238147.3238196

<Programming> 2021

Cost of changing one strategy: 
Parse and Check one file 
Code generation for one strategy 

To achieve incremental compilation
with static linking, we split up the
compiler into a front-end and a
back-end. To wire things back
together we use the PIE
incremental build system [3]. In this
model, a change to a single
strategy definition in a single
module will result in some checks
by the incremental system and the
execution of one CheckModule task
for the strategy and one Back task
for the changed strategy.


