Incremental Compilation for Stratego

Whole-program compilation model

N\ 4 :
.. Stratego [1] is a DSL for
module m -~ Main .Javd program transformation

imports k . based on term rewriting with
Compller programmable rewriting

\
! N\
\ : : strategies. Named rules and
S]._O_O \ InterOpReQIStrer'Java strategies can be defined in
\

sl = multiple modules. Multiple

|
|
|
WI
|
|
c e |
Sl = ... Frontend : Backend \ \\ definitions Wlth the Same
> = : \ s1 00 java name are merged as different
5L T . ' \ — options of the rule or strategy.
: s2_0_0 \ This is an extensibility
module k | | \\ \mechanism of the language. )
| s2 0 _0.java
MI
|
|
c e ,
i

strategies

strategies
S2 =
S3 =

AN — @ requires
s3_0_0 , . -
P s3_0_0.java > Produces

- ---» contributes to

4 ) 4
Whole program compilation takes in all relevant files with Stratego modules. It parses all and builds a single internal model Cost of changing one strategy:
of the program. This is then used to generate a Java class for each strategy, and to generate two shared classes. Full compilation

\_ W,

Dynamic linking compilation model

(" )

N With a dynamic linking approach the compiler is run once for each module. This means that it
: : multiple modules define the same strategy, we now have duplicate classes. These classes need to
InterOpReQIStrer'Java be merged (linked) at run-time. This was a case study for the Pluto incremental build system [2].

\. J
(

module m
imports Kk

[1] “Stratego/XT 0.17. A language and toolset for \
program transformation", Bravenboer et al.

SCP'07 doi:10.1016/j.scico.2007.11.003

[2] "A sound and optimal incremental build system

with dynamic dependencies”, Erdweg et al.
OOPSLA'15 doi:10.1145/2858965.2814316
[3] "Scalable incremental building with dynamic

~
A\~ task dependencies”, Konat et al.

P ASE'18 doi:10.1145/3238147.3238196

- -
_ - - s3 00 Runtime cost for every strategy call
_ AN Cost of changing one strategy:
s2 0 O.java .-~ Compiler run for one file

Our work: Static linking compilation model

nodaules detining sZ. |m,K|
modules defining s1: [m]

module m ast -
) | ] success, success, | astof st s1_0_0.java
1mports Kk imports: [K], message messages,

m | k

strategies
Sl =
sl =
S2 =

module k

strategies
S2 =
S3 =

definitions: [s1, s2], files written
. ~|_ references: [s3] ast of s2
strategies s2_0_0.java
sl = ... imports: [K], CheckModule
sl = ... definitions: [s1, s2] messages
é )

Bac To achieve incremental compilation

S? = referenced defs: [S3] |
CC | messages
_ Resolve ast, moduleList: [m, K] with static linking, we split up the
module Kk [Imports: [}, T imports: [] messages ast of s2 compiler into a front-end and a
definitions: [s2, s3] definitions: [s2, s3], ast of s Bac back-end. To wire things back

reference together we use the PIE
_ incremental build system [3]. In this

strategies

CheckModule model, a change to a single

definitions: [s1,52,s3] strategy d.eﬁnition.in a single
module will result in some checks
modules aefining so. by the incremental system and the

| | || | | .
execution of one CheckModule task
. PlE Overhe_\ad for the strategy and one Back task
o Efocnlizzcii ttlir::i \for the changed strategy. )
B Static check time Cost of changing one strategy:
, Parse and Check one file
F.rontend Shufﬂe. timeé || code generation for one strategy
Library shuffle time — N
Library time This benchmark shows the

ol incremental compile times of 119
Javaicompile time commits in a StraF’)cego codebase of
“ I l Ii 399 files with 10,091 distinct named
l!, l“ 1111 ““! strategies. The compile time of the

| | | ..CL::J).CL::J) |

l!
]| .

] whole-program compiler was
L L

| I1—|,|—| A

o S mlgéloloé 93.54+5 seconds. The clean
.‘u‘r WEEEES
™~ I <

BERE
0N M

O oo fo
=Sy
|

2.12E

compiler time of the incremental
compiler is 178.53 seconds. The

|I|||ll!ll
ryrjprprl
N N NN |
Wl
gain of our incremental compiler is
under 10 seconds recompilation

N
L
@E.
(M
NN
instead of 1.5 minutes.

Size of trees passed to frontend tasks N ~ 0 A

Constructing Hybrid Incremental Compilers for Cross-Module Extensibility
with an Internal Build System

—

Jeff Smits, Gabriél Konat, Eelco Visser Delit
e University of
doi:10.22152/programming-journal.org/2020/4/16 Technology




