
Path-Sensitive Atomic Commit: Local Coordination
Avoidance for Distributed Transactions

Tim Soethout, Tijs van der Storm, Jurgen J. Vinju

Goal: Domain Knowledge to Faster Transactions

Large distributed (enterprise) software systems are complex

Consistency / Isolation ⇐⇒ Scalability / Performance

dsls and models capture domain knowledge without
implementation details

Scope: Distributed concurrent objects with async messaging

From:
Domain Models

Sync

Booking a transfer =
Withdrawing money + Depositing money

Account

opened
open close

withdraw, deposit

Account

opened

withdraw, deposit

open close
Money Transfer

validatedstart

book

fail

To:
Scalable/correct implementation

0k

100k

200k

300k

400k

0 5 10 15 20
Number of nodes

Th
ro

ug
hp

ut
 (t

ps
)

variant Bare Simple Sharding Persistence

Problem: Bottleneck on high-contention objects

Tax office bank account:

Strong consistency requirements

Strict time bounds

Many tax and benefits money transfers

Potential bottleneck for high contention

Implementing Sync with 2pl/2pc

Two-Phase Locking (2pl): Concurrency Control: Single object, No
concurrent access to object

Two-Phase Commit (2pc): Atomic Commitment: Multiple objects,
Well-understood and Often used

Combined 2pl/2pc: Serializable Isolation guarantees

A lot of waiting, but enough balance for both, right? =⇒

Approach: Reduce coordination w/ Domain
Knowledge

Insight: Enough balance for both withdrawals and

the commit or abort of first operation does not influence second

Increase parallelism where it is safe

Enter Path-Sensitive Atomic Commit (psac):

Operations in parallel, when safe

Less waiting/locking of objects

Extra computing time vs. waiting on message IO

2pl/2pc vs. psac

€70
apply −€50
€20

Success −€50

Commit −€50

€70
 (−€50)

Start −€50

2P
C

Commit −€30

Success −€30

€100
apply −€30
€70

Delay −€50
−€50

2P
C

Start −€30
€100
 (−€30)

−€30

Account Object
2PL/2PC

time

Initial balance: €100

€100
apply −€30
defer −€50
€70
apply −€50
€20

Success −€30

Commit −€30

€100
 (−€30)
defer −€50

Success −€50

Commit −€50

2P
C

Start −€50€100
 (−€30)
 (−€50)

−€50

2P
C

Start −€30€100
 (−€30)

Account Object
PSAC

−€30

Initial balance: €100

Evaluation: Performance with varying contention

Message passing actors implementation of 2pl/2pc and psac.

Experiment data/results available @ doi:10.5281/zenodo.3405371

2pl/2pc is special case of psac with parallelism disabled

Experiments with varying contention:

NoSync – Operations without synchronization

Sync – Uniform money transfers over 100.000 accounts

Sync1000 – Uniform money transfers over 1000 accounts

Results

Similar throughput for NoSync & Sync, not enough contention

0.0k

1.0k

2.0k

3.0k

4.0k

0 5 10 15 20 25

Number of nodes

T
h

ro
u

g
h

p
u

t
(t

p
s
)

variant 10002PL/2PC 1000PSAC

Under high-contention Sync1000: Up to 1.8 times higher
median throughout

Conclusion

High contention bottleneck with 2pl/2pc

Safe parallelism with psac; currently looking into isolation
guarantees

Promising for creating high-performant implementations from
models

‹Programming› 2021 tim.soethout@ing.com

https://doi.org/10.5281/zenodo.3405371
mailto:tim.soethout@ing.com

