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Goal: Domain Knowledge to Faster Transactions

Large distributed (enterprise) software systems are complex

Consistency / Isolation ⇐⇒ Scalability / Performance

dsls and models capture domain knowledge without
implementation details

Scope: Distributed concurrent objects with async messaging

From:
Domain Models

Sync 
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To:
Scalable/correct implementation
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Problem: Bottleneck on high-contention objects

Tax office bank account:

Strong consistency requirements

Strict time bounds

Many tax and benefits money transfers

Potential bottleneck for high contention

Implementing Sync with 2pl/2pc

Two-Phase Locking (2pl): Concurrency Control: Single object, No
concurrent access to object

Two-Phase Commit (2pc): Atomic Commitment: Multiple objects,
Well-understood and Often used

Combined 2pl/2pc: Serializable Isolation guarantees

A lot of waiting, but enough balance for both, right? =⇒

Approach: Reduce coordination w/ Domain
Knowledge

Insight: Enough balance for both withdrawals and

the commit or abort of first operation does not influence second

Increase parallelism where it is safe

Enter Path-Sensitive Atomic Commit (psac):

Operations in parallel, when safe

Less waiting/locking of objects

Extra computing time vs. waiting on message IO

2pl/2pc vs. psac
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Evaluation: Performance with varying contention

Message passing actors implementation of 2pl/2pc and psac.

Experiment data/results available @ doi:10.5281/zenodo.3405371

2pl/2pc is special case of psac with parallelism disabled

Experiments with varying contention:

NoSync – Operations without synchronization

Sync – Uniform money transfers over 100.000 accounts

Sync1000 – Uniform money transfers over 1000 accounts

Results

Similar throughput for NoSync & Sync, not enough contention
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Under high-contention Sync1000: Up to 1.8 times higher
median throughout

Conclusion

High contention bottleneck with 2pl/2pc

Safe parallelism with psac; currently looking into isolation
guarantees

Promising for creating high-performant implementations from
models
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