
Using Relational Problems to Teach Property-Based Testing

1. Motivate

Relational problems have inputs that admit

more than one valid output.

These problems are already common in

computing education. Property based testing can

handle their uncertainty!

Examples

Sorting By Key

An unstable sort-by-key function admits

multiple valid outputs for inputs where two

elements have the same key.

Minimum Spanning Tree

A graph may admit multiple minimum

spanning trees.

Graph Shortest Path

There may be more than one shortest path

between two vertices.

2. Teach

Scaffold PBT

Given some specified function:

specified-fun :: Input → Output

...implement these two functions:

is-valid :: (Input, Output) → Bool
Satisfied if the specification admits the given Output
as a valid result for Input.

generate-input :: Number → Input
Produce a random Input of a given size for the

system-under-test.

PBT-Focused Assignments

We teach this scaffold with assignments focused

on property based testing:

Students are given a spec.

Students do not implement the spec.

Instead, students implement is-valid and

generate-input.

3. Evaluate

We apply property-based thinking to evaluate

where students struggle.

For instance, an is-valid for a function that sorts

people by their age must enforce:

Same Size

Input and Output have the same size.

Same Elements

Input and Output have the same elements.

Ordered

Output is in ascending order.

We discover students' difficulties with PBT by

constructing test cases where all but one of these

properties are satisfied; e.g:

is-valid([Prsn("Ash",1), Prsn("Cal",9)],

 [Prsn("Cal",9), Prsn("Ash",1)])

 is false

This test case detects only when ordering is not

correctly enforced by is-valid, and doesn't care

if Same Size or Same Elements isn't enforced.

Focused tests like this, for each property, give us

fine-grained insight into which properties students

failed (or even forgot) to enforce.

No QuickCheck Required !

