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Limited Interation Patterns
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def loop({ts_a, ts_b}) do  
  state = 
    receive do 
      {:msg_a, timestamp} ->  

{timestamp, ts_b} 

      {:msg_b, timestamp} ->  
{ts_a, timestamp} 

      {:msg_c, timestamp} ->  
if ts_b > ts_a do 

# reaction code 
end 
{0,0} # reset state  

    end # receive-end 

   loop(state) 

end

Example of how to detect a 
sequence of messages in Elixir 
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Motivation: Smart-home scenario

4

[A1] Turn on the lights of a room if someone enters in it, and its ambient light is less than 40 lux. 
   
[A2] Turn off the lights of a room after two minutes without detecting any movement. 
   
[A3] Send me a notification when a window has been open for an hour. 

[A4] Send a notification if someone presses the doorbell, but do not send a new notification after every doorbell press. 
        Each notification must have an interval of at least 30 seconds. 

[A5] Activate the occupied-home scene when I arrive, and activate the empty-home scene when I leave. 
   
[A6] Fire a notification if the electricity consumption at home is greater than 200 kWh in the last three weeks. 

[A7] Send a notification if the boiler fires three Floor Heating Failures and one Internal Failure within one hour.  
        Each notification must have an interval of at least 60 minutes.



Online Poll
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Correlation Requirements
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1.Advanced filter mechanism
• Content-based 
• Time-based 

2.Flexible event selection policy
• First-in 
• Last-in 
• Nth-in 
• For-all 

3.Extensive correlation operators
• Conjunctions 
• Disjunctions 
• Sequencing 
• Negation 

4.Event accumulation
• Count-based 
• Time-based 

5.Event transformation
• Aggregation

[A1] Turn on the lights of a room if someone enters in it, and its ambient 
light is less than 40 lux. 
   
[A2] Turn off the lights of a room after two minutes without detecting 
any movement. 
   
[A3] Send me a notification when a window has been open for an hour. 

[A4] Send a notification if someone presses the doorbell, but do not 
send a new notification after every doorbell press. Each notification 
must have an interval of at least 30 seconds. 

[A5] Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave. 
   
[A6] Fire a notification if the electricity consumption at home is greater 
than 200 kWh in the last three weeks. 

[A7] Send a notification if the boiler fires three Floor Heating Failures 
and one Internal Failure within one hour. Each notification must have an 
interval of at least 60 minutes.
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 Domain-Specific Language for Coordinating Large Groups 
of Heterogeneous Actors 

Pattern Sets

Sparrow



Language Abstractions as Macros
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pattern NAME  as DEFINITION

reaction NAME  do BODY end

react_to PATTERN_NAME , with: REACTION_NAME

remove_reaction REACTION_NAME, from: PATTERN_NAME

remove_all_reactions PATTERN_NAME
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  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

Sparrow in a Nutshell
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Bind reactions to patterns

1.Advanced filter mechanism
• Content-based 
• Time-based 

2.Flexible event selection policy
• First-in 
• Last-in 
• Nth-in 
• For-all 

3.Extensive correlation operators
• Conjunctions 
• Disjunctions 
• Sequencing 
• Negation 

4.Event accumulation
• Count-based 
• Time-based 

5.Event transformation
• Aggregation

Import language abstractions Define patterns Define reactions

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 



Sparrow in a Nutshell
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Bind reactions to patterns

  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

Import language abstractions Define patterns Define reactions

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs



Sparrow in a Nutshell
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Bind reactions to patternsImport language abstractions Define patterns Define reactions

P⟨N, S, O?, G?, R*⟩

Elementary pattern

Name
Selector
Operators
Guards

S⟨type, attr1,..,attrN⟩
O⟨o+⟩
G⟨g+⟩

  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs



Sparrow in a Nutshell
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Bind reactions to patternsImport language abstractions Define patterns Define reactions

  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

Composite patterns

P⟨N, Pr, O?, G?, R*⟩
Name
Pattern reference
Operators
Guards

O⟨o+⟩
G⟨g+⟩

(first-order)

Pr⟨N⟩

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs



Sparrow in a Nutshell
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Bind reactions to patternsImport language abstractions Define patterns Define reactions

Pa⟨S, O?, G?⟩ Anonymous pattern

Composite patterns

Name

Operators
Guards

O⟨o+⟩
G⟨g+⟩

P⟨N, F, F+, O, G?, R*⟩F, F+

ReFerence F⟨Pr, |Pa⟩

P⟨N, Pr, O?, G?, R*⟩

Pattern reference Pr⟨N⟩

  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs



Sparrow in a Nutshell
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Bind reactions to patternsImport language abstractions Define patterns Define reactions

Reactions

R⟨N?, L, I?, T⟩
Name
List of messages
Dictionary of Intermediate transformation results
Actor sTate

  1 defmodule SmartHomeDemo do
  2    use Sparrow.Actor
  3    
  4    pattern motion as {:motion, id, :on, location}
  5    pattern front_door_motion as motion{location= :front_door}
  6    pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
  7    pattern front_door_contact as {:contact, cid, :open, :front_door}
  8   
  9    pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10                                          options: [ interval: {60, :secs}, seq: true, last: true ]
11    
12    pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13                                     options: [ interval: {60, :secs}, seq: true, last: true ]
14   
15    reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16    reaction activate_leave_scene(l, i, t), do:  # code logic for leaving home  
17    
18    react_to occupied_home, with: activate_home_scene
19    react_to empty_home, with: activate_leave_scene
20    
21 end     

“Activate the occupied-home scene when I arrive, and activate the 
empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs



Features supported 
by Sparrow patterns.
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Sparrow

Elementary Composite Accumulation

Patterns



Evaluation
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• Rules DSL 
• Jython

Smart-home Platforms Actor-based Language

• Python (AppDaemon)

(Thread-based)

• openHAB - https://doi.org/10.5281/zenodo.3611168  
• Home-Assistant -  http://doi.org/10.5281/zenodo.3611271 

Replies      Views           Likes 

108 5508    82

Forum posts
Sparrow

https://doi.org/10.5281/zenodo.3611168
http://doi.org/10.5281/zenodo.3611271


Automation #5 Implementation
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Jython1 Elixir2 Sparrow3
openHAB

“Activate the occupied-home scene when I arrive, and activate the empty-home scene when I leave”. 

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON 60 secs



Implementation Statistics
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Note: The results shown are the total LoC of the seven automation examples 
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