\

Advanced Join Patterns for the Actor Model
pbased on CEP Techniques

<Programming>
March 2021

Humberto Rodriguez A.
Joeri De Koster

Wolfgang De Meuter m ;.%'.. SOFTWARE
? J LANGUAGES
Y | LrB

Reactive Applications

(A) Distributed

a Produce

D
<)
-

e Coordinate

Cloud/Edge

e React

-l

(B) Embedded

Jetson Nano

“~~Camera

Ultrasonic sensor

Robots based single-board computer (SBC)

“Light sensor

L Imiteq Interation Patterns

; de:tégzpi{ts_a' ts_b) do Example of how to detect a
3 receive do sequence of messages in Elixir
4 {:msg_a, timestamp} —>

5 {timestamp, ts_b}

o | (MsgA — MsgB — MsgC)
7 {:msg_b, timestamp} —>

8 {ts_a, timestamp}

9

10 1:msg_c, timestamp} —>

11 if ts b > ts _a do

12 # reaction code

13 end

14 {0,0} # reset state

15

16 end # receive-end

17

18 loop(state)

19

20 end

Motivation: Smart-home scenario

[A1] Turn on the lights of a room if someone enters in it, and its ambient light is less than 40 [ux.
[A2] Turn off the lights of a room after two minutes without detecting any movement.
[A3] Send me a notification when a window has been open for an hour.

[A4] Send a notification if someone presses the doorbell, but do not send a new notification after every doorbell press.
Each notification must have an interval of at least 30 seconds.

[AS5] Activate the occupied-home scene when | arrive, and activate the empty-home scene when | leave.
[A6] Fire a notification it the electricity consumption at home is greater than 200 kWh in the last three weeks.

[A7] Send a notification if the boiler fires three Floor Heating Failures and one Internal Failure within one hour.
Each notification must have an interval of at least 60 minutes.

Online Poll

Automations =~ Questions

| have automations that involve multiple devices and 90%
conditions. For example, Turn on the lights of a room
IF motion is detected AND its ambient light is

LESS THAN 40 Llux.
-]

20000 97 12000 RO000S
000 O

Votes

2 714 voters

‘- 29 countries

] 30 days Q1 Q2 Q3 Q4 Q5 Q6 Q7

B Questions

https://doi.org/10.5281/zen0d0.3666325 http://doi.org/10.5281/zenodo.3465385 http://doi.org/10.5281/zen0d0.3464966 http://doi.org/10.5281/zenodo.3464952

http://doi.org/10.5281/zenodo.3465385
http://doi.org/10.5281/zenodo.3464952
http://doi.org/10.5281/zenodo.3464966
https://doi.org/10.5281/zenodo.3666325

Correlation Requirements

1.Advanced filter mechanism
Content-based
B Time-based
2.Flexible event selection policy
—irst-in
| ast-in
B Nth-in
M For-all
3.Extensive correlation operators
Conjunctions
Disjunctions
B Sequencing
B Negation
4.Event accumulation
Count-based
B Time-based
5.Event transformation
Aggregation

[A1] Turn on the lights of a room It someone enters in it, and its ambient
light is less than 40 lux.

[A2] Turn off the lights of a room

any movement.

[A3] Send me a notification when a window has been open

[A4] Send a notification If someone presses the doorbell, but do not
send a new notification after every doorbell press. Each notification

il eeEVEE:)l interval of at least 30 secondsl

[A5] Activate the occupied-home scene IERRIERINE, and activate the
empty-home scenellaEailREEVE.

I [A6] Fire a notification if the electricity consumption at home Is greater

than 200 KWh [[gRialsERIRIgSISAVEEICE
I| [A7] Send a notification if the boiler jillieERiglisEi sl misEilgle s BliEs

and el =l EIREEI NI Vilg lalelalzNalellidl Each notification must have an
iInterval of EiREEE N0 alVi =S

Sparrow

Domain-Specific Language for Coordinating Large Groups
of Heterogeneous Actors

| anguage Abstractions as Macros

pattern NAME as DEFINITION
reaction NAME do BODY end
react to PATTERN NAME , with: REACTION NAME

remove reaction REACTION NAME, from: PATTERN NAME

remove_all reactions PATTERN NAME

Sparrow in a Nutshell

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

1 defmodule SmartHomeDemo do

use Sparrow.Actor 1.Advanced filter mechanism
Content-based
pattern motion as {{motion, id, :on, location} .
pattern front_door_motion as motion{location= :front_door} . Time-based
pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid} 2.Flexible event selection pollcy
pattern front_door_contact as {:contact, cid, :open, :front_door} Cirst-in
_ast-in

pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,

options: [z ,, last: true] L] Nth-1n
M For-all

3.Extensive correlation operators
Conjunctions

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,

options: [[z BRI ,, last: true]

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home Disjunctions
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home . Sequencing
17 :
18 react_to occupied _home, with: activate_home_scene . Negatlon
19 react_to empty_home, with: activate_leave_scene 4.Event accumulation
20 Count-based
21 end '
B Time-based
5.Event transformation
Aggregation

. Import language abstractions . Define patterns Define reactions Bind reactions to patterns

Sparrow in a Nutshell

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

1 defmodule SmartHomeDemo do occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON
use Sparrow.Actor Z

00 secs

pattern motion as {:motion, id, :on, location}
pattern front_door_motion as motion{location= :front_door}
pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}

pattern front_door_contact as {:contact, cid, :open, :front_door}

pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,

options: [interval: {60, :secs}, seq: true, last: true]

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,

options: [interval: {60, :secs}, seq: true, last: true]

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home

16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home

18 react_to occupied _home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20

21 end

Bl mport language abstractions [l Define patterns Define reactions Bind reactions to patterns

10

Sparrow in a Nutshell

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

1 defmodule SmartHomeDemo do occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON
use Sparrow.Actor Z

00 secs

pattern motion as {:motion, id, :on, location}

pattern front_door_motion as motion{location= :front_door}

Elementary pattern

P(N,S,[0%[G] R*)

Name
Selector S{type,attrl,..,attrN)
Operators O{o™)

® Guards G{g™)

pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}

pattern front_door_contact as {:contact, cid, :open, :front_door}

pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,

options: [interval: {60, :secs}, seq: true, last: true]

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,

options: [interval: {60, :secs}, seq: true, last: true]

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home

16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home

18 react_to occupied _home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20

21 end

Bl mport language abstractions [l Define patterns Define reactions Bind reactions to patterns

Sparrow in a Nutshell

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

1 defmodule SmartHomeDemo do occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

use Sparrow.Actor =
% 60 secs

pattern motion as {:motion, id, :on, location}

pattern front_door_motion as location= :front_door} _
pattern entrance_hall_motion as location= :entrance_hall - CompOSIte patterns

pattern front_door_contact as {:contact, cid, :open, :front_door} |
P(N,.,.,., R*) (first-order)

pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,

options: [interval: {60, :secs}, seq: true, last: true] Name

Pattern reference P.(N)
@ Operators O(o™)

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion, N
® Guards G{(g™)

options: [interval: {60, :secs}, seq: true, last: true]

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home

16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home

18 react_to occupied _home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20

21 end

. Import language abstractions . Define patterns Define reactions Bind reactions to patterns

Sparrow in a Nutshell

1 defmodule SmartHomeDemo do

use Sparrow.Actor

pattern motion as {:motion, id, :on, location}

pattern front_door_motion as location= :front_door}
pattern entrance_hall_motion as location= :entrance_hall -

pattern front_door_contact as {:contact, cid, :open, :front_door}

pattern occupied_home as [igelaiaNe eeYal1slo}dle]s front_door_contact entrance_hall_motion]
options: [[z A% BE{s10F :secs}

pattern empty_home as [Hilde:li[«=M U Misleidfe]g! front_door_contact front_door_motion}
options: [[tz a1 EE{s10F :secs}

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17

18 react_to occupied _home, with: activate_home_scene

19 react_to empty_home, with: activate_leave_scene

20

21 end

. Import language abstractions . Define patterns

Define reactions Bind reactions to patterns

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

K 60 secs

Composite patterns

P(v. B 01 G &)

Name

Pattern reference P{N)
@ Operators O(o™)
® Guards G{(g™)

(VG B8 <)

@ ReFerence F(P,, |P,)

P,(S,0°,G’) Anonymous pattern

13

Sparrow in a Nutshell

“Activate the occupied-home scene when | arrive, and activate the
empty-home scene when | leave”.

1 defmodule SmartHomeDemo do occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON
use Sparrow.Actor Z

00 secs

pattern motion as {:motion, id, :on, location}
pattern front_door_motion as motion{location= :front_door}]
pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid} ReaCtlonS

pattern front_door_contact as {:contact, cid, :open, :front_door} 9 9
R(N’,L,I’,T)
pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,

. . Name
options: [interval: {60, :secs}, seq: true, last: true]

List of messages

Dictionary of Intermediate transformation results

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
Actor sTate

options: [interval: {60, :secs}, seq: true, last: true]

15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home

16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home

18 react_to occupied _home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20

21 end

Bl mport language abstractions [l Define patterns Define reactions Bind reactions to patterns

14

Features SuppOrted Patterns

by Sparrow patterns.

Content-based X % -
Time-based X x <
Selection

First-in X - <
Last-in X - <
Nth-in X X X
For-all X - %
Correlation

Conjunction - % X
Disjunction _ % %
Sequencing - % %
Negation X x <
Accumulation

Count-based i _ <
Time-based _ _ <

Transformation

Aggregation] _ X

Evaluation

Smart-home Platforms

(Thread-based)

(/\) OQQQHA@ N5 Home Assistant
Rules DSL Python (AppDaemon)
Jython

—Orum pPosts

///> T e R e——— \\‘
| Replies Views Likes |

550882 }

* openHAB - https://doi.org/10.5281/zen0do.3611168
 Home-Assistant - http://doi.org/10.5281/zenodo.3611271

Actor-based Language

b clixir

=~
2

Sparrow

16

https://doi.org/10.5281/zenodo.3611168
http://doi.org/10.5281/zenodo.3611271

Automation #5 Implementation

“Activate the occupied-home scene when | arrive, and activate the empty-home scene when | leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON Z

OOoONOUVIDN WN =

© Jython,

from core.rules import rule
from core.triggers import when
from java.time import ZonedDateTime as ZDateTime

lastDoorOpen = ZDateTime.now().minusHours(24)
lastEHallMotion = ZDateTime.now().minusHours(24)
lastFDoorMotion = ZDateTime.now().minusHours(24)

@rule("(Py) Front Door Opened")
@when("ltem Front_Door_Contact changed to OPEN")
def front_door_opened(event):

global lastDoorOpen

lastDoorOpen = ZDateTime.now()

@rule("(Py) Motion Detected - Entrance Hall")
@when("ltem Entrance_Hall_Motion changed to ON")
def entrance_hall_motion(event):
global lastEHallMotion, lastFDoorMotion
lastEHallMotion = ZDateTime.now()

if lastFDoorMotion.isBefore(lastEHalIMotion.minusSeconds(60)):

return

if lastEHallMotion.isAfter(lastDoorOpen) and lastDoorOpen.isAfter(lastFDoorMotion):

code logic for arriving home

@rule("(Py) Motion Detected - Front Door")
@when("ltem Front_Door_Motion changed to ON")
def front_door_motion(event):
global lastEHallMotion, lastFDoorMotion
lastFDoorMotion = ZDateTime.now()

if lastEHallMotion.isBefore(lastFDoorMotion.minusSeconds(60)):

return

if lastFDoorMotion.isAfter(lastDoorOpen) and lastDoorOpen.isAfter(lastEHallIMotion):

code logic for leaving home

= lIXIr

1 defmodule SmartHomeDemo do
require Timex

2

3

4 def loop({m_door, m_hall, c_door}) do

5 state =

6 receive do

7 {:motion, _id, :on, :front_door, m_door_dt} ->

8 if Timex.before?(Timex.shift(m_door_dt, seconds: -60), m_hall) do

9 if Timex.after?(m_door_dt, c_door) and Timex.after?(c_door, m_hall) do
10 # code logic for leaving home
11 end
12 end
13 {m_door_dt, m_hall, c_door}
14
15 {:motion, _id, :on, :entrance_hall, m_hall_dt} ->
16 if Timex.before?(Timex.shift(m_hall_dt, seconds: -60), m_door) do
17 if Timex.after?(m_hall_dt, c_door) and Timex.after?(c_door, m_door) do
18 # code logic for arriving home
19 end
20 end
21 {m_door, m_hall_dt, c_door}
22
23 {:contact, _id, :open, :front_door, dt} ->
24 {m_door, m_hall, dt}
25 end
26
27 loop(state)
28 end
29
30 end

00 secCs

€© Sparrow

1 defmodule SmartHomeDemo do

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20

use Sparrow.Actor

pattern motion as {:motion, id, :on, location}

pattern front_door_motion as motion{location= :front_door}

pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
pattern front_door_contact as {:contact, cid, :open, :front_door}

pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
options: [interval: {60, :secs}, seq: true, last: true]

pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
options: [interval: {60, :secs}, seq: true, last: true]

reaction activate_home_scene(l, i, t), do: # code logic for arriving home
reaction activate_leave_scene(l, i, t), do: # code logic for leaving home

react_to occupied_home, with: activate_home_scene
react_to empty_home, with: activate_leave_scene

21 end

| Sequencing control
| State management
| Windowing management

.| Correlation logic

17

Implementation Statistics

o’

00% 3.49%

Jython Elixir Sparrow 7.58% =D
openHAB 90% +—— E— — I
| 0% 21.05%

: 07 37.21% ~ 28.79% = T
Sequencing control 3 5 1 [00— _ _ _
State management 32 19 0 - 60% T — — —

50% 22.09% ~— 28.79% — —

Windowing management 19 19 4 40% 14— _ - @&

. . 30% 1 — - —
Correlation logic 32 23 14 ’

20% T 37.21% — 3485% —

\ 10% - — — —

Total lines of code 80 N\ 0% _
JytlggeqH AB Elixir Sparrow

Note: The results shown are the total LoC of the seven automation examples

\

Advanced Join Patterns for the Actor Model
pbased on CEP Techniques

<Programming>
March 2021

Humberto Rodriguez Avila
Joeri De Koster

Wolfgang De Meuter m ;.%'.. SOFTWARE
? J LANGUAGES
Y | LrB

