
Advanced Join Patterns for the Actor Model
based on CEP Techniques

Humberto Rodríguez A.
Joeri De Koster
Wolfgang De Meuter

<Programming>
March 2021

Reactive Applications

2

Produce Coordinate1 2 React3

IoT Cloud/Edge

Robots based single-board computer (SBC)

(A) Distributed

(B) Embedded
1 2

3

Camera

Ultrasonic sensor

Raspberry pi

Jetson Nano

Light sensor

Limited Interation Patterns

3

def loop({ts_a, ts_b}) do
 state =
 receive do
 {:msg_a, timestamp} ->

{timestamp, ts_b}

 {:msg_b, timestamp} ->
{ts_a, timestamp}

 {:msg_c, timestamp} ->
if ts_b > ts_a do

reaction code
end
{0,0} # reset state

 end # receive-end

 loop(state)

end

Example of how to detect a
sequence of messages in Elixir

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(MsgA → MsgB → MsgC)

Motivation: Smart-home scenario

4

[A1] Turn on the lights of a room if someone enters in it, and its ambient light is less than 40 lux.

[A2] Turn off the lights of a room after two minutes without detecting any movement.

[A3] Send me a notification when a window has been open for an hour.

[A4] Send a notification if someone presses the doorbell, but do not send a new notification after every doorbell press.
 Each notification must have an interval of at least 30 seconds.

[A5] Activate the occupied-home scene when I arrive, and activate the empty-home scene when I leave.

[A6] Fire a notification if the electricity consumption at home is greater than 200 kWh in the last three weeks.

[A7] Send a notification if the boiler fires three Floor Heating Failures and one Internal Failure within one hour.
 Each notification must have an interval of at least 60 minutes.

Online Poll

5

http://doi.org/10.5281/zenodo.3465385

714 voters
29 countries
30 days 0

175

350

525

700

Q1 Q2 Q3 Q4 Q5 Q6 Q7

191239298342
512520

662

Questions

Vo
te

s

Automations ≈ Questions

 http://doi.org/10.5281/zenodo.3464952 http://doi.org/10.5281/zenodo.3464966https://doi.org/10.5281/zenodo.3666325

http://doi.org/10.5281/zenodo.3465385
http://doi.org/10.5281/zenodo.3464952
http://doi.org/10.5281/zenodo.3464966
https://doi.org/10.5281/zenodo.3666325

Correlation Requirements

6

1.Advanced filter mechanism
• Content-based
• Time-based

2.Flexible event selection policy
• First-in
• Last-in
• Nth-in
• For-all

3.Extensive correlation operators
• Conjunctions
• Disjunctions
• Sequencing
• Negation

4.Event accumulation
• Count-based
• Time-based

5.Event transformation
• Aggregation

[A1] Turn on the lights of a room if someone enters in it, and its ambient
light is less than 40 lux.

[A2] Turn off the lights of a room after two minutes without detecting
any movement.

[A3] Send me a notification when a window has been open for an hour.

[A4] Send a notification if someone presses the doorbell, but do not
send a new notification after every doorbell press. Each notification
must have an interval of at least 30 seconds.

[A5] Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave.

[A6] Fire a notification if the electricity consumption at home is greater
than 200 kWh in the last three weeks.

[A7] Send a notification if the boiler fires three Floor Heating Failures
and one Internal Failure within one hour. Each notification must have an
interval of at least 60 minutes.

7

 Domain-Specific Language for Coordinating Large Groups
of Heterogeneous Actors

Pattern Sets

Sparrow

Language Abstractions as Macros

8

pattern NAME as DEFINITION

reaction NAME do BODY end

react_to PATTERN_NAME , with: REACTION_NAME

remove_reaction REACTION_NAME, from: PATTERN_NAME

remove_all_reactions PATTERN_NAME

1

2

3

4

5

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

Sparrow in a Nutshell

9
Bind reactions to patterns

1.Advanced filter mechanism
• Content-based
• Time-based

2.Flexible event selection policy
• First-in
• Last-in
• Nth-in
• For-all

3.Extensive correlation operators
• Conjunctions
• Disjunctions
• Sequencing
• Negation

4.Event accumulation
• Count-based
• Time-based

5.Event transformation
• Aggregation

Import language abstractions Define patterns Define reactions

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

Sparrow in a Nutshell

10
Bind reactions to patterns

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

Import language abstractions Define patterns Define reactions

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs

Sparrow in a Nutshell

11
Bind reactions to patternsImport language abstractions Define patterns Define reactions

P⟨N, S, O?, G?, R*⟩

Elementary pattern

Name
Selector
Operators
Guards

S⟨type, attr1,..,attrN⟩
O⟨o+⟩
G⟨g+⟩

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs

Sparrow in a Nutshell

12
Bind reactions to patternsImport language abstractions Define patterns Define reactions

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

Composite patterns

P⟨N, Pr, O?, G?, R*⟩
Name
Pattern reference
Operators
Guards

O⟨o+⟩
G⟨g+⟩

(first-order)

Pr⟨N⟩

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs

Sparrow in a Nutshell

13
Bind reactions to patternsImport language abstractions Define patterns Define reactions

Pa⟨S, O?, G?⟩ Anonymous pattern

Composite patterns

Name

Operators
Guards

O⟨o+⟩
G⟨g+⟩

P⟨N, F, F+, O, G?, R*⟩F, F+

ReFerence F⟨Pr, |Pa⟩

P⟨N, Pr, O?, G?, R*⟩

Pattern reference Pr⟨N⟩

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs

Sparrow in a Nutshell

14
Bind reactions to patternsImport language abstractions Define patterns Define reactions

Reactions

R⟨N?, L, I?, T⟩
Name
List of messages
Dictionary of Intermediate transformation results
Actor sTate

 1 defmodule SmartHomeDemo do
 2 use Sparrow.Actor
 3
 4 pattern motion as {:motion, id, :on, location}
 5 pattern front_door_motion as motion{location= :front_door}
 6 pattern entrance_hall_motion as motion{location= :entrance_hall, id~> mid}
 7 pattern front_door_contact as {:contact, cid, :open, :front_door}
 8
 9 pattern occupied_home as front_door_motion and front_door_contact and entrance_hall_motion,
10 options: [interval: {60, :secs}, seq: true, last: true]
11
12 pattern empty_home as entrance_hall_motion and front_door_contact and front_door_motion,
13 options: [interval: {60, :secs}, seq: true, last: true]
14
15 reaction activate_home_scene(l, i, t), do: # code logic for arriving home
16 reaction activate_leave_scene(l, i, t), do: # code logic for leaving home
17
18 react_to occupied_home, with: activate_home_scene
19 react_to empty_home, with: activate_leave_scene
20
21 end

“Activate the occupied-home scene when I arrive, and activate the
empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON

60 secs

Features supported
by Sparrow patterns.

15

Sparrow

Elementary Composite Accumulation

Patterns

Evaluation

16

• Rules DSL
• Jython

Smart-home Platforms Actor-based Language

• Python (AppDaemon)

(Thread-based)

• openHAB - https://doi.org/10.5281/zenodo.3611168
• Home-Assistant - http://doi.org/10.5281/zenodo.3611271

Replies Views Likes

108 5508 82

Forum posts
Sparrow

https://doi.org/10.5281/zenodo.3611168
http://doi.org/10.5281/zenodo.3611271

Automation #5 Implementation

17

Jython1 Elixir2 Sparrow3
openHAB

“Activate the occupied-home scene when I arrive, and activate the empty-home scene when I leave”.

occupied-home = FrontDoorMotionON -> FrontDoorContactOpen -> EntranceHallMotionON 60 secs

Implementation Statistics

18

Note: The results shown are the total LoC of the seven automation examples

Advanced Join Patterns for the Actor Model
based on CEP Techniques

Humberto Rodríguez Avila
Joeri De Koster
Wolfgang De Meuter

<Programming>
March 2021

